883 research outputs found

    The OTIS Reference Manual

    Get PDF
    This document describes the port definitions, electrical specifications, modes of operation and programming sequences of the OTIS TDC. The chip is developed for the Outer Tracker of the LHCb experiment. OTIS1.0 is the first full-scale prototype of this 32 channel TDC and has been submitted in April 2002 in a standard 0.25µm CMOS process. Within the clock driven architecture of the chip a DLL provides the reference for the drift time measurement. The drift time data of every channel is stored in the pipeline memory until a trigger decision arrives. A control unit provides memory and trigger management and handles data transmission to the subsequent DAQ stage. The latest chip version is OTIS1.3

    OTIS: a radiation hard TDC for LHCb

    Get PDF

    Wafer test of the LHCb Outer Tracker TDC-Chip

    Get PDF
    The OTIS-TDC is the front end readout chip for the LHCb Outer Tracker. It is designed to measure drift times with a resolution better than 1 ns. As the chip will be directly mounted to its board, the test have to be performed on the wafer itself. As the testing period for 7 000 chips was only three weeks, many test routines have been implemented on a FPGA. Each chip is subjected to detailed probe testing to ensure the full functionality as well as a good performance. Overall 47 wafer have been tested. From the chips passing the test 2 000 have been used in the Outer Tracker front end electronic

    Understanding heterogeneities of flow paths for agricultural practice

    Get PDF
    Heterogeneous flow processes, especially preferential flow, facilitate the influx of contaminants (and nutrients) through the soil into the groundwater. With a combination of soil physical, soil chemical and soil geophysical methods we investigate the susceptibility of selected soils for such flow processes on agricultural fields in Lower Saxony. Investigations are performed within the EU Interreg project TOPSOIL which investigates opportunities to improve surface and groundwater quality as well as water management strategies under the consideration of climate adaptation challenges. The project addresses the transport behavior of percolation water in the unsaturated zone, the migration of nitrogen and veterinary pharmaceuticals in soils, and elaborates - together with different stakeholders (e.g. farmers, water supply companies) - common strategies to minimize the migration of these substances into the groundwater. We present results of a first soil scientific and soil geophysical census using radiometry and electrical conductivity which shows the heterogeneity of the site with regard to conductivity and radiation. We used the CMD explorer for electromagnetic mapping (horizontal and vertical dipoles, intercoil spacing of 1.48/2.82/4.49 m, investigation depths of appr. 0 - 6 m). The radiometry detector comprised five sodium-iodide crystals each with a volume of 4 litres. The spectral data are evaluated for potassium, uranium (Bi-214), thorium (T-208) and total counts. The geophysical measurements were used to generally differentiate areas of different soil properties. These areas were sampled for soil physics and soil chemistry (ram coring at 48 sites, 0 - 2 m) with the aim of determining the variability of the transport behavior on a field scale

    Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout

    Get PDF
    The 9600 channels of the multi-wire proportional chamber of the H1 experiment at HERA have to be read out within 96 ns and made available to the trigger system. The tight spatial conditions at the rear end flange require a compact bidirectional readout electronics with minimal power consumption and dead material. A solution using 40 identical optical link modules, each transferring the trigger information with a physical rate of 4 x 832 Mbps via optical fibers, has been developed and commisioned. The analog pulses from the chamber can be monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure

    The LHCb Outer Tracker Front End Electronics

    Get PDF
    This note provides an overview of the front-end electronics used to readout the drift-times of the LHCb Outer Tracker straw tube chambers. The main functional components of the readout are the ASDBLR ASIC for amplification and signal digitization, the OTIS ASIC for the time measurement and for the L0 buffering, and the GOL ASIC to serialize the digital data for the optical data transmission. The L1 buffer board used to receive the data which is sent via the optical link is a common LHCb development and is not described here. This note supersedes an earlier document [1]
    • …
    corecore